Civil Engineer Examination
Engineering Surveying Test Plan
(Effective for October 2012 Examination)

Definition of Engineering Surveying

Engineering Surveying is defined as those activities involved in the practice and application of surveying principles for the location, design, construction and maintenance and operation of engineered projects.

This area of practice is structured into five primary content areas:

I. Standards of Practice (6%)
II. Equipment and Uses (8%)
III. Field Measurements (28%)
IV. Calculations (33%)
V. Data Application Procedures (25%)

Glossary of Engineering Surveying Terms

As used in the test plan task statements, the following abilities are defined as:

Determine To establish or define after consideration, investigation, or calculation for use in an engineering surveying activity.
Interpret To conceive and explain the meaning of engineering surveying terms, symbols and procedures.
Perform To execute and complete a task in accordance with the requirements of engineering surveying practice.
Prepare To put together or make by combining various existing or newly created elements for use in an engineering surveying activity.
Recognize To know or identify the engineering surveying elements of a project from past experience or knowledge.
I. Standards of Practice (6%)

Standards of Practice include knowledge of the laws regulating engineering surveying and the standards of care required.

T01. Practice in accordance to laws regulating engineering surveying and limits of practice

K01. Characteristics and purposes of subdivision maps (Subdivision Map Act) as it applies to the Business and Professions Code 6731.1

K02. Professional Engineer's (PE) Act
II. Equipment and Uses (8%)

Engineering surveying equipment and uses include the types of equipment used and their application for gathering and interpreting field data and for construction layout.

T02. Distinguish the purposes and procedures of different survey types

K03. Control surveys (purpose and procedures)
K04. Construction surveys (purpose and procedures)
K05. Route surveys (purpose and procedures)
K06. Topographic surveys (purpose and procedures)

T03. Identify the capabilities and limitations of survey instruments and equipment

K07. Total Station
K08. Leveling equipment
K09. Global Positioning System (GPS)
K10. Other surveying equipment (e.g., engineer's transit, survey prism, plumb bob, Electronic Distance Measurement (EDM))
III. Field Measurements (28%)

Engineering surveying field measurements include the methods and procedures for determining distances, angles and elevations.

T04. Perform construction surveying (e.g., construction staking)
 K11. Construction layout requirements
 K12. Horizontal and vertical curve layout
 K13. Horizontal and vertical control layout
 K14. Line and grade layout
 K15. Offset distance computations
 K16. Procedures for establishing points on a line
 K17. Procedures for locating a single point
 K27. Geometric properties and equations of a curve
 K28. Curve deflections
 K29. Procedures for calculating a horizontal curve (e.g., beginning of a curve, end of a curve, intersection)
 K30. Properties of compound and reversing curves
 K31. Procedures for calculating the intersection of a curve and a straight line
 K32. Procedures for calculating a vertical curve (e.g., stationing, highest/lowest point, rate of gradient)
 K33. Procedures for calculating profile grade (slope) and elevations on the tangents

T05. Perform the measurement of horizontal distances
 K18. Measuring horizontal distances
 K19. Measuring slope distances

T06. Perform the measurement of angles
 K20. Measuring horizontal angles
 K21. Measuring deflection angles
 K23. Relationships between azimuths, bearings, back bearings and angles

T07. Perform the measurement of elevations
 K22. Measuring vertical (profile) distances
 K24. Leveling methods (e.g., differential, profile, trigonometric, cross-section)
IV. Calculations (33%)

Engineering surveying calculations are the analytical methods for applying the mathematical relationships between measured distances, angles and elevations.

T08. Perform leveling calculations from field data to determine elevations
 K34. Leveling calculations (e.g., error analysis, checking and creating notes, adjusting)

T09. Perform traverse survey calculations
 K25. General trigonometric and geometric formulas (triangles, angles and lines)
 K34. Leveling calculations (e.g., error analysis, checking and creating notes, adjusting)
 K26. Trigonometric relationships to determine the area of a polygon
 K35. Procedures for calculating distances from coordinates
 K36. Procedures for calculating bearings or azimuths from coordinates
 K37. Coordinate geometry relationships (curves, points and lines)
 K38. Procedures for calculating area

T10. Perform rectangular coordinate system calculations
 K35. Procedures for calculating distances from coordinates
 K36. Procedures for calculating bearings or azimuths from coordinates
 K37. Coordinate geometry relationships (curves, points and lines)

T11. Perform calculations to determine quantities of construction materials
 K39. Methods and procedures for calculating volumes of materials (e.g., mass diagrams, average end, cross-sections)
V. Data Application Procedures (25%)

Engineering surveying data application procedures include the research and planning for field surveys and the conversion of field data to an engineering format.

T12. Perform processing of field data
 K40. Field notes formats
 K41. Plotting profiles
 K42. Plotting cross-sections
 K43. Plotting field points and data
 K44. Applications of stationing
 K45. Relationship between grade lines and cross-sections

T13. Obtain information from legal descriptions and easement data pertinent to engineering surveying projects
 K46. Formats and terminology of legal descriptions as it applies to the Business and Professions Code 6731.1
 K47. Different types of easement data

T14. Use of datums for horizontal and vertical control
 K48. Different types of horizontal datums
 K49. Different types of vertical datums (e.g., bench marks)

T15. Prepare topographic and planimetric maps
 K50. Contour intervals
 K51. Methods to plot contours from field information
 K52. Methods for interpolating elevations
 K56. Application of Geographic Information Systems (GIS)

T16. Interpret maps
 K53. Map scales
 K54. Units of conversion
 K55. Exaggerated scales
 K56. Plan and profile as it applies to the Business and Professions Code 6731.1
 K57. Characteristics and purposes of underground mapping
 K58. Characteristics and purposes of topographic mapping
V. Data Application Procedures (Continued)

K59. Characteristics and purposes of grading plans

K60. Characteristics and purposes of improvement plans (e.g., street, traffic signal, storm drain, water)

K61. Applications of Geographic Information Systems (GIS)